Product Repression of Alkane Monooxygenase Expression in Pseudomonas butanovora

Author:

Doughty D. M.1,Sayavedra-Soto L. A.2,Arp D. J.2,Bottomley P. J.13

Affiliation:

1. Department of Microbiology

2. Department of Botany and Plant Pathology

3. Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon

Abstract

ABSTRACT Physiological and regulatory mechanisms that allow the alkane-oxidizing bacterium Pseudomonas butanovora to consume C 2 to C 8 alkane substrates via butane monooxygenase (BMO) were examined. Striking differences were observed in response to even- versus odd-chain-length alkanes. Propionate, the downstream product of propane oxidation and of the oxidation of other odd-chain-length alkanes following β-oxidation, was a potent repressor of BMO expression. The transcriptional activity of the BMO promoter was reduced with as little as 10 μM propionate, even in the presence of appropriate inducers. Propionate accumulated stoichiometrically when 1-propanol and propionaldehyde were added to butane- and ethane-grown cells, indicating that propionate catabolism was inactive during growth on even-chain-length alkanes. In contrast, propionate consumption was induced (about 80 nmol propionate consumed · min −1 · mg protein −1 ) following growth on the odd-chain-length alkanes, propane and pentane. The induction of propionate consumption could be brought on by the addition of propionate or pentanoate to the growth medium. In a reporter strain of P. butanovora in which the BMO promoter controls β-galactosidase expression, only even-chain-length alcohols (C 2 to C 8 ) induced β-galactosidase following growth on acetate or butyrate. In contrast, both even- and odd-chain-length alcohols (C 3 to C 7 ) were able to induce β-galactosidase following the induction of propionate consumption by propionate or pentanoate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3