Quantifying Subpopulation Synergy for Antibiotic Combinations via Mechanism-Based Modeling and a Sequential Dosing Design

Author:

Landersdorfer Cornelia B.12,Ly Neang S.2,Xu Hongmei2,Tsuji Brian T.2,Bulitta Jürgen B.12

Affiliation:

1. Centre for Medicine Use and Safety, Monash University (Parkville campus), Parkville, Victoria, Australia

2. School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA

Abstract

ABSTRACT Quantitative modeling of combination therapy can describe the effects of each antibiotic against multiple bacterial populations. Our aim was to develop an efficient experimental and modeling strategy that evaluates different synergy mechanisms using a rapidly killing peptide antibiotic (nisin) combined with amikacin or linezolid as probe drugs. Serial viable counts over 48 h were obtained in time-kill experiments with all three antibiotics in monotherapy against a methicillin-resistant Staphylococcus aureus USA300 strain (inoculum, 10 8 CFU/ml). A sequential design (initial dosing of 8 or 32 mg/liter nisin, switched to amikacin or linezolid at 1.5 h) assessed the rate of killing by amikacin and linezolid against nisin-intermediate and nisin-resistant populations. Simultaneous combinations were additionally studied and all viable count profiles comodeled in S-ADAPT and NONMEM. A mechanism-based model with six populations (three for nisin times two for amikacin) yielded unbiased and precise ( r = 0.99, slope = 1.00; S-ADAPT) individual fits. The second-order killing rate constants for nisin against the three populations were 5.67, 0.0664, and 0.00691 liter/(mg · h). For amikacin, the maximum killing rate constants were 10.1 h −1 against its susceptible and 0.771 h −1 against its less-susceptible populations, with 14.7 mg/liter amikacin causing half-maximal killing. After incorporating the effects of nisin and amikacin against each population, no additional synergy function was needed. Linezolid inhibited successful bacterial replication but did not efficiently kill populations less susceptible to nisin. Nisin plus amikacin achieved subpopulation synergy. The proposed sequential and simultaneous dosing design offers an efficient approach to quantitatively characterize antibiotic synergy over time and prospectively evaluate antibiotic combination dosing strategies.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3