Predicting Tipranavir and Darunavir Resistance Using Genotypic, Phenotypic, and Virtual Phenotypic Resistance Patterns: an Independent Cohort Analysis of Clinical Isolates Highly Resistant to All Other Protease Inhibitors
-
Published:2010-06
Issue:6
Volume:54
Page:2473-2479
-
ISSN:0066-4804
-
Container-title:Antimicrobial Agents and Chemotherapy
-
language:en
-
Short-container-title:Antimicrob Agents Chemother
Author:
Talbot Annie12, Grant Philip2, Taylor Jonathan2, Baril Jean-Guy1, Liu Tommy Fulisma2, Charest Hugues3, Brenner Bluma4, Roger Michel5, Shafer Robert2, Cantin Régis3, Zolopa Andrew2
Affiliation:
1. Clinique du Quartier Latin and Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada 2. Stanford University, Stanford, California 3. Institut National de Santé Publique du Québec/Laboratoire de Santé Publique du Québec, Ste-Anne-de-Bellevue, Québec, Canada 4. Centre Universitaire de Santé McGill, Montréal, Québec, Canada 5. Département de Microbiologie et Immunologie de l'Université de Montréal and Département de Microbiologie de l'Hôpital Notre-Dame du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
Abstract
ABSTRACT
Genotypic interpretation systems (GISs) for darunavir and tipranavir susceptibility are rarely tested by the use of independent data sets. The virtual phenotype (the phenotype determined by Virco [the “Vircotype”]) was used to interpret all genotypes in Québec, Canada, and phenotypes were determined for isolates predicted to be resistant to all protease inhibitors other than darunavir and tipranavir. We used multivariate analyses to predict relative phenotypic susceptibility to darunavir and tipranavir. We compared the performance characteristics of the Agence Nationale de Recherche sur le Sida scoring algorithm, the Stanford HIV database scoring algorithm (with separate analyses of the discrete and numerical scores), the Vircotype, and the darunavir and tipranavir manufacturers' scores for prediction of the phenotype. Of the 100 isolates whose phenotypes were determined, 89 and 72 were susceptible to darunavir and tipranavir, respectively. In multivariate analyses, the presence of I84V and V82T and the lack of L10F predicted that the isolates would be more susceptible to darunavir than tipranavir. The presence of I54L, V32I, and I47V predicted that the isolates would be more susceptible to tipranavir. All GISs except the system that provided the Stanford HIV database discrete score performed well in predicting the darunavir resistance phenotype (
R
2
= 0.61 to 0.69); the
R
2
value for the Stanford HIV database discrete scoring system was 0.38. Other than the system that provided the Vircotype (
R
2
= 0.80), all GISs performed poorly in predicting the tipranavir resistance phenotype (
R
2
= 0.00 to 0.31). In this independent cohort harboring highly protease inhibitor-resistant HIV isolates, reduced phenotypic susceptibility to darunavir and tipranavir was rare. Generally, GISs predict susceptibility to darunavir substantially better than they predict susceptibility to tipranavir.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Reference28 articles.
1. Chan-Tack, K. M., K. A. Struble, and D. B. Birnkrant. 2008. Intracranial hemorrhage and liver-associated deaths associated with tipranavir/ritonavir: review of cases from the FDA's Adverse Event Reporting System. AIDS Patient Care STDs22:843-850. 2. Clotet, B., N. Bellos, J. M. Molina, D. Cooper, J. C. Goffard, A. Lazzarin, A. Wöhrmann, C. Katlama, T. Wilkin, R. Haubrich, C. Cohen, C. Farthing, D. Jayaweera, M. Markowitz, P. Ruane, S. Spinosa-Guzman, and E. Lefebvre. 2007. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomized trials. Lancet369:1169-1178. 3. Dam, E., R. Quercia, B. Glass, D. Descamps, O. Launay, X. Duval, H. G. Kräusslich, A. J. Hance, F. Clavel, and ANRS 109 Study Group. 2009. Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Pathog.5:e1000345. 4. Deeks, S. G., S. J. Gange, M. M. Kitahata, M. S. Saag, A. C. Justice, R. S. Hogg, J. J. Eron, J. T. Brooks, S. B. Rourke, M. J. Gill, R. J. Bosch, C. A. Benson, A. C. Collier, J. N. Martin, M. B. Klein, L. P. Jacobson, B. Rodriguez, T. R. Sterling, G. D. Kirk, S. Napravnik, A. R. Rachlis, L. M. Calzavara, M. A. Horberg, M. J. Silverberg, K. A. Gebo, M. B. Kushel, J. J. Goedert, R. G. McKaig, and R. D. Moore. 2009. Trends in multidrug treatment failure and subsequent mortality among antiretroviral therapy-experienced patients with HIV-infection in North America. Clin. Infect. Dis.49:1582-1590. 5. Abstr. 6th Eur. HIV Drug Resist. Workshop abstr. 54 2008
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|