Prediction of HIV-1 protease resistance using genotypic, phenotypic, and molecular information with artificial neural networks

Author:

Tunc Huseyin1,Dogan Berna2,Darendeli Kiraz Büşra Nur34,Sari Murat5,Durdagi Serdar67,Kotil Seyfullah38

Affiliation:

1. Department of Biostatistics and Medical Informatics, School of Medicine, Bahcesehir University, Istanbul, Turkey

2. Department of Medicinal Biochemistry, School of Medicine, Bahcesehir University, Istanbul, Turkey

3. Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey

4. Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey

5. Department of Mathematics Engineering, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey

6. Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey

7. Department of Pharmaceutical Chemistry, School of Pharmacy, Bahcesehir University, Istanbul, Turkey

8. Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey

Abstract

Drug resistance is a primary barrier to effective treatments of HIV/AIDS. Calculating quantitative relations between genotype and phenotype observations for each inhibitor with cell-based assays requires time and money-consuming experiments. Machine learning models are good options for tackling these problems by generalizing the available data with suitable linear or nonlinear mappings. The main aim of this study is to construct drug isolate fold (DIF) change-based artificial neural network (ANN) models for estimating the resistance potential of molecules inhibiting the HIV-1 protease (PR) enzyme. Throughout the study, seven of eight protease inhibitors (PIs) have been included in the training set and the remaining ones in the test set. We have obtained 11,803 genotype-phenotype data points for eight PIs from Stanford HIV drug resistance database. Using the leave-one-out (LVO) procedure, eight ANN models have been produced to measure the learning capacity of models from the descriptors of the inhibitors. Mean R2 value of eight ANN models for unseen inhibitors is 0.716, and the 95% confidence interval (CI) is [0.592–0.840]. Predicting the fold change resistance for hundreds of isolates allowed a robust comparison of drug pairs. These eight models have predicted the drug resistance tendencies of each inhibitor pair with the mean 2D correlation coefficient of 0.933 and 95% CI [0.930–0.938]. A classification problem has been created to predict the ordered relationship of the PIs, and the mean accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC) values are calculated as 0.954, 0.791, 0.791, and 0.688, respectively. Furthermore, we have created an external test dataset consisting of 51 unique known HIV-1 PR inhibitors and 87 genotype-phenotype relations. Our developed ANN model has accuracy and area under the curve (AUC) values of 0.749 and 0.818 to predict the ordered relationships of molecules on the same strain for the external dataset. The currently derived ANN models can accurately predict the drug resistance tendencies of PI pairs. This observation could help test new inhibitors with various isolates.

Funder

TUBITAK, 2232–International Fellowship for Outstanding Researchers

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3