A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence

Author:

Sanglard D1,Hube B1,Monod M1,Odds F C1,Gow N A1

Affiliation:

1. Institut de Microbiologie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. dsanglar@eliot.unil.ch

Abstract

Secreted aspartyl proteinases (Saps) from Candida albicans are encoded by a multigene family with at least nine members (SAP1 to SAP9) and are considered putative virulence factors important for the pathogenicity of this human pathogen. The role of Sap isoenzymes in the virulence of C. albicans has not yet been clearly established, and therefore, using recent progress in the genetics of this yeast, we have constructed a panel of isogenic yeasts, each with a disruption of one or several SAP genes. We focused on the construction of a C. albicans strain in which three related SAP genes (SAP4, SAP5, and SAP6) were disrupted. Growth of the delta sap4,5,6 triple homozygous null mutant DSY459 in complex medium was not affected, whereas, interestingly, growth in a medium containing protein as the sole nitrogen source was severely impaired compared to the growth of the wild-type parent strain SC5314. Since the presence of Sap2 is required for optimal growth on such medium, this suggests that Sap4, Sap5, or Sap6 plays an important role for the process of induction of SAP2. When guinea pigs and mice were injected intravenously with DSY459, their survival time was significantly longer than that of control animals infected with the wild-type SC5314. Attenuated virulence of DSY459 was followed by a significant reduction of yeast cells in infected organs. These data suggest that the group of Sap4, Sap5, and Sap6 isoenzymes is important for the normal progression of systemic infection by C. albicans in animals.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3