Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus

Author:

De Bernardis F1,Chiani P1,Ciccozzi M1,Pellegrini G1,Ceddia T1,D'Offizzi G1,Quinti I1,Sullivan P A1,Cassone A1

Affiliation:

1. Department of Bacteriology and Medical Mycology, Istituto Superiore di Sanità, Rome, Italy.

Abstract

Isolates of Candida albicans from the oral cavities of subjects at different stages of human immunodeficiency virus (HIV) infection or uninfected controls were examined for (i) production of aspartic proteinase(s), a putative virulence-associated factor(s); (ii) the presence in the fungal genome of two major genes (SAP1 and SAP2) of the aspartic proteinase family; and (iii) experimental pathogenicity in a murine model of systemic infection. It was found that the fungal isolates from symptomatic patients secreted, on average, up to eightfold more proteinase than the isolates from uninfected or HIV-infected but asymptomatic subjects. This differential property was stably expressed by the strains even after years of maintenance in stock cultures. Moreover, representative high-proteinase isolates were significantly more pathogenic for mice than low-proteinase isolates of C. albicans. The characters high proteinase and increased virulence were not associated with a single molecular type or category identifiable through DNA fingerprinting or pulsed-field electrophoretic karyotype, and both SAP1 and SAP2 genes were present in both categories of isolates, on the same respective chromosomes. In conclusion, our data suggest that during HIV infection more-virulent strains or biotypes of C. albicans which are identifiable by direct analysis of virulence determinants are selected. It also appears that the biotype switch to increased aspartic proteinase and virulence properties occurs before the HIV-infected subject enters the symptomatic stage and overt AIDS.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3