Affiliation:
1. Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine 92717, USA.
Abstract
To identify proteins involved in the formation of replication complexes at the 3' end of poliovirus negative-strand RNA, a combined in vitro biochemical and in vivo genetic approach was used. Five subgenomic cDNA constructs were generated to transcribe different negative-strand RNA fragments. In UV cross-linking assays, distinct differences in binding of proteins in extracts from poliovirus-infected and uninfected cells to virus-specific, radiolabeled transcripts were observed. Two proteins present in extracts from poliovirus-infected cells with approximate molecular masses of 36 and 38 kDa were shown to cross-link to the 3' end of poliovirus negative-strand RNA. Appearance of the 36- and 38-kDa proteins in UV cross-linking assays can be detected 3 to 3.5 h after infection, and cross-linking reaches maximum levels by 5 h after infection. The binding site for the 36-kDa protein overlaps with the computer-predicted loop b region of stem-loop I, the so-called cloverleaf structure, and the RNA sequence of this region is required for efficient binding. Transfection of full-length, positive-sense RNA containing a five-nucleotide substitution (positions 20 to 25) in the loop b region of stem-loop I into tissue culture cells yielded only viral isolates with a reversion at position 24 (U-->C). This finding demonstrates that the wild-type cytidine residue at position 24 is essential for virus replication. RNA binding studies with transcripts corresponding to the 3' end of negative-strand RNA suggest that complex formation with the 36-kDa protein plays an essential role during the viral life cycle.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献