Identification and Characterization of Small Molecules That Inhibit Intracellular Toxin Transport

Author:

Saenz Jose B.1,Doggett Teresa A.1,Haslam David B.1

Affiliation:

1. Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110

Abstract

ABSTRACT Shiga toxin (Stx), cholera toxin (Ctx), and the plant toxin ricin are among several toxins that reach their intracellular destinations via a complex route. Following endocytosis, these toxins travel in a retrograde direction through the endosomal system to the trans -Golgi network, Golgi apparatus, and endoplasmic reticulum (ER). There the toxins are transported across the ER membrane to the cytosol, where they carry out their toxic effects. Transport via the ER from the cell surface to the cytosol is apparently unique to pathogenic toxins, raising the possibility that various stages in the transport pathway can be therapeutically targeted. We have applied a luciferase-based high-throughput screen to a chemical library of small-molecule compounds in order to identify inhibitors of Stx. We report two novel compounds that protect against Stx and ricin inhibition of protein synthesis, and we demonstrate that these compounds reversibly inhibit bacterial transport at various stages in the endocytic pathway. One compound (compound 75) inhibited transport at an early stage of Stx and Ctx transport and also provided protection against diphtheria toxin, which enters the cytosol from early endosomes. In contrast, compound 134 inhibited transport from recycling endosomes through the Golgi apparatus and protected only against toxins that access the ER. Small-molecule compounds such as these will provide insight into the mechanism of toxin transport and lead to the identification of compounds with therapeutic potential against toxins routed through the ER.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3