IpaD Localizes to the Tip of the Type III Secretion System Needle of Shigella flexneri

Author:

Espina Marianela1,Olive Andrew J.1,Kenjale Roma1,Moore David S.2,Ausar S. Fernando3,Kaminski Robert W.4,Oaks Edwin V.4,Middaugh C. Russell3,Picking William D.1,Picking Wendy L.1

Affiliation:

1. Departments of Molecular Biosciences

2. and KU Center for Research, Inc., University of Kansas, Lawrence, Kansas 66045

3. Pharmaceutical Chemistry

4. Department of Enteric Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910

Abstract

ABSTRACT Shigella flexneri , the causative agent of shigellosis, is a gram-negative bacterial pathogen that initiates infection by invading cells within the colonic epithelium. Contact with host cell surfaces induces a rapid burst of protein secretion via the Shigella type III secretion system (TTSS). The first proteins secreted are IpaD, IpaB, and IpaC, with IpaB and IpaC being inserted into the host cell membrane to form a pore for translocating late effectors into the target cell cytoplasm. The resulting pathogen-host cross talk results in localized actin polymerization, membrane ruffling, and, ultimately, pathogen entry. IpaD is essential for host cell invasion, but its role in this process is just now coming to light. IpaD is a multifunctional protein that controls the secretion and presentation of IpaB and IpaC at the pathogen-host interface. We show here that antibodies recognizing the surface-exposed N terminus of IpaD neutralize Shigella 's ability to promote pore formation in erythrocyte membranes. We further show that MxiH and IpaD colocalize on the bacterial surface. When TTSS needles were sheared from the Shigella surface, IpaD was found at only the needle tips. Consistent with this, IpaD localized to the exposed tips of needles that were still attached to the bacterium. Molecular analyses then showed that the IpaD C terminus is required for this surface localization and function. Furthermore, mutations that prevent IpaD surface localization also eliminate all IpaD-related functions. Thus, this study demonstrates that IpaD localizes to the TTSA needle tip, where it functions to control the secretion and proper insertion of translocators into host cell membranes.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3