Vaccination with a Protective Ipa Protein-Containing Nanoemulsion Differentially Alters the Transcriptomic Profiles of Young and Elderly Mice following Shigella Infection

Author:

Lu Ti1,Raju Murugesan23ORCID,Howlader Debaki R.1ORCID,Dietz Zackary K.1,Whittier Sean K.1,Varisco David J.4,Ernst Robert K.4ORCID,Coghill Lyndon M.23ORCID,Picking William D.1ORCID,Picking Wendy L.1

Affiliation:

1. Bond Life Sciences Center and Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA

2. Bioinformatics and Analytic Core, University of Missouri, Columbia, MO 65211, USA

3. MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA

4. Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD 21201, USA

Abstract

Shigella spp. are responsible for bacillary dysentery or shigellosis transmitted via the fecal–oral route, causing significant morbidity and mortality, especially among vulnerable populations. There are currently no licensed Shigella vaccines. Shigella spp. use a type III secretion system (T3SS) to invade host cells. We have shown that L-DBF, a recombinant fusion of the T3SS needle tip (IpaD) and translocator (IpaB) proteins with the LTA1 subunit of enterotoxigenic E. coli labile toxin, is broadly protective against Shigella spp. challenge in a mouse lethal pulmonary model. Here, we assessed the effect of LDBF, formulated with a unique TLR4 agonist called BECC470 in an oil-in-water emulsion (ME), on the murine immune response in a high-risk population (young and elderly) in response to Shigella challenge. Dual RNA Sequencing captured the transcriptome during Shigella infection in vaccinated and unvaccinated mice. Both age groups were protected by the L-DBF formulation, while younger vaccinated mice exhibited more adaptive immune response gene patterns. This preliminary study provides a step toward identifying the gene expression patterns and regulatory pathways responsible for a protective immune response against Shigella. Furthermore, this study provides a measure of the challenges that need to be addressed when immunizing an aging population.

Funder

NIAID

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3