Effects of toxicity, aeration, and reductant supply on trichloroethylene transformation by a mixed methanotrophic culture

Author:

Alvarez-Cohen L1,McCarty P L1

Affiliation:

1. Department of Civil Engineering, University of California, Berkeley 94720.

Abstract

The trichloroethylene (TCE) transformation rate and capacity of a mixed methanotrophic culture at room temperature were measured to determine the effects of time without methane (resting), use of an alternative energy source (formate), aeration, and toxicity of TCE and its transformation products. The initial specific TCE transformation rate of resting cells was 0.6 mg of TCE per mg of cells per day, and they had a finite TCE transformation capacity of 0.036 mg of TCE per mg of cells. Formate addition resulted in increased initial specific TCE transformation rates (2.1 mg/mg of cells per day) and elevated transformation capacity (0.073 mg of TCE per mg of cells). Significant declines in methane conversion rates following exposure to TCE were observed for both resting and formate-fed cells, suggesting toxic effects caused by TCE or its transformation products. TCE transformation and methane consumption rates of resting cells decreased with time much more rapidly when cells were shaken and aerated than when they remained dormant, suggesting that the transformation ability of methanotrophs is best preserved by storage under anoxic conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference41 articles.

1. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea;Arciero D.;Biochem. Biophys. Res. Commun.,1989

2. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions;Bouwer E. J.;Appl. Environ. Microbiol.,1983

3. .Brusseau G. A. H.-C. Tsien R. S. Hanson and L. P. Wackett. Biodegradation in press.

4. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosinus trichosporium OB3b;Burrows K. J.;J. Gen. Microbiol.,1984

5. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath);Colby J.;Biochem. J.,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3