Abstract
Addition of nitrapyrin, allylthiourea, C(inf2)H(inf2), and CH(inf3)F to freshwater sediment slurries inhibited CH(inf4) oxidation and nitrification to similar extents. Dicyandiamide and allylsulfide were less inhibitory for CH(inf4) oxidation than for nitrification. Allylsulfide was the most potent inhibitor of nitrification, and the estimated 50% inhibitory concentrations for this process and CH(inf4) oxidation were 0.2 and 121 (mu)M, respectively. At a concentration of 2 (mu)M allylsulfide, growth and CH(inf4) oxidation activity of Methylosinus trichosporium OB3b were not inhibited. Allylsulfide at 200 (mu)M inhibited the growth of M. trichosporium by approximately 50% but did not inhibit CH(inf4) oxidation activity. Nitrite production by cells of M. trichosporium was not significantly affected by allylsulfide, except at a concentration of 2 mM, when growth and CH(inf4) oxidation were also inhibited by about 50%. Methane monooxygenase activity present in soluble fractions of M. trichosporium was not inhibited significantly by allylsulfide at either 200 (mu)M or 2 mM. These results suggest that the partial inhibition of CH(inf4) oxidation in sediment slurries by high allylsulfide concentrations may be caused by an inhibition of the growth of methanotrophs rather than an inhibition of methane monooxygenase activity specifically. We conclude that allylsulfide is a promising tool for the study of interactions of methanotrophs and nitrifiers in N cycling and CH(inf4) turnover in natural systems.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献