Long- and short-term temperature differences affect organic and inorganic nitrogen availability in forest soils

Author:

Boczulak S. A.1,Hawkins B. J.1,Maynard D. G.2,Roy R.1

Affiliation:

1. Centre for Forest Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, British Columbia, Canada V8W 3N5

2. Pacfic Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia, Canada V8Z 1M5

Abstract

Boczulak, S. A., Hawkins, B. J., Maynard, D. G. and Roy, R. 2015. Long- and short-term temperature differences affect organic and inorganic nitrogen availability in forest soils. Can. J. Soil Sci. 95: 77–86. Soil microbial activity determines rates of decomposition and is strongly influenced by temperature. Soil microbial communities may be adapted to site characteristics, including temperature, through physiological modification of microbial populations or changes in species composition; however, response to short-term changes in temperature may also occur. We searched for evidence of short- and long-term temperature response of microbial communities involved in soil nitrogen (N) cycling by measuring the relative availability of organic and inorganic N forms in forest soils from a high and a low elevation site, incubated at 10, 16 and 20°C for 16 wk. By week 16, ammonium concentrations were greater in soils incubated at 16 and 20°C than at 10°C, and in soil from the low elevation site, compared with high elevation. Nitrate concentrations increased in soil from the low elevation site incubated at 16 and 20°C, but changed little in other treatments. Assessment of autotrophic nitrification potential showed gross nitrification in soil from the low elevation site was likely from classical chemolithotrophic nitrifiers. Organic N concentration increased over time in the 16 and 20°C incubations of soil from the low elevation site, but only increased in the 20°C treatment for soil from the high elevation site. Long-lasting site effects were indicated by the more active microbial community in soil from low elevation, which could be related to site temperature. Evidence of short-term temperature response of N cycling processes was observed in soils from both elevations.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3