The Global Regulator CodY Regulates Toxin Gene Expression in Bacillus anthracis and Is Required for Full Virulence

Author:

van Schaik Willem1,Château Alice1,Dillies Marie-Agnès2,Coppée Jean-Yves2,Sonenshein Abraham L.3,Fouet Agnès1

Affiliation:

1. Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA 2172, Paris, France

2. Institut Pasteur, Plate-Forme 2, Paris, France

3. Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts

Abstract

ABSTRACT In gram-positive bacteria, CodY is an important regulator of genes whose expression changes upon nutrient limitation and acts as a repressor of virulence gene expression in some pathogenic species. Here, we report the role of CodY in Bacillus anthracis , the etiologic agent of anthrax. Disruption of codY completely abolished virulence in a toxinogenic, noncapsulated strain, indicating that the activity of CodY is required for full virulence of B. anthracis . Global transcriptome analysis of a codY mutant and the parental strain revealed extensive differences. These differences could reflect direct control for some genes, as suggested by the presence of CodY binding sequences in their promoter regions, or indirect effects via the CodY-dependent control of other regulatory proteins or metabolic rearrangements in the codY mutant strain. The differences included reduced expression of the anthrax toxin genes in the mutant strain, which was confirmed by lacZ reporter fusions and immunoblotting. The accumulation of the global virulence regulator AtxA protein was strongly reduced in the mutant strain. However, in agreement with the microarray data, expression of atxA , as measured using an atxA-lacZ transcriptional fusion and by assaying atxA mRNA, was not significantly affected in the codY mutant. An atxA-lacZ translational fusion was also unaffected. Overexpression of atxA restored toxin component synthesis in the codY mutant strain. These results suggest that CodY controls toxin gene expression by regulating AtxA accumulation posttranslationally.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference67 articles.

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3