Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA

Author:

Cai W Z1,Schaffer P A1

Affiliation:

1. Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts.

Abstract

As a first step in identifying the functions and intramolecular functional domains of herpes simplex virus type 1 infected cell protein 0 (ICP0) in productive infection and latency, a series of mutant plasmids specifying varying amounts of the ICP0 primary amino acid sequence were constructed. In transient expression assays with mutant and wild-type plasmids, the N-terminal half of the ICP0 molecule was found to be sufficient to transactivate a variety of viral promoters. Although promoters representing the immediate-early, early, and late kinetic classes were transactivated by wild-type ICP0, individual promoters responded to mutant forms of ICP0 in a manner consistent with the possibility that ICP0 transactivates different promoters by different mechanisms. Unlike infection with virus particles, which contain the 65-kilodalton transcriptional transactiovator, the initiation of viral replication after transfection of cells with purified viral DNA requires de novo protein synthesis. In order to assess the role of ICP0 in the de novo synthesis of infectious virus, Vero cells were transfected with purified DNA of wild-type virus or an ICP0 null mutant and the production of infectious virus was monitored. In cells transfected with mutant DNA, virus production was delayed by 2 days and the level of virus was reduced by several orders of magnitude relative to Vero cells transfected with wild-type viral DNA, suggesting an important role for ICP0 in the de novo synthesis of infectious particles. In cotransfection experiments with infectious DNA of the ICP0 null mutant and a plasmid specifying wild-type ICP0 titers of infectious virus were significantly enhanced relative to transfection with mutant DNA alone, confirming the role of ICP0 in de novo synthesis. These findings are consistent with the proposed role of ICP0 in reactivation of herpes simplex virus from latency (D. A. Leib, D. M. Coen, C. L. Bogard, K. A. Hicks, D. R. Yager, D. M. Knipe, K. L. Tyler, and P. A. Schaffer, J. Virol. 63:759-768, 1989), a process also thought to require de novo protein synthesis. The complementing activities of ICP0 mutant plasmids for ICP0 null mutant DNA in cotransfection assays correlated well with their transactivating activities for viral promoters in transient assays, indicating that the transactivating function of ICP0 is a critical factor in the de novo synthesis of infectious particles.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 220 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3