Roles of Ring-Hydroxylating Dioxygenases in Styrene and Benzene Catabolism in Rhodococcus jostii RHA1

Author:

Patrauchan Marianna A.1,Florizone Christine1,Eapen Shawn1,Gómez-Gil Leticia1,Sethuraman Bhanu1,Fukuda Masao2,Davies Julian1,Mohn William W.1,Eltis Lindsay D.1

Affiliation:

1. Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada

2. Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan

Abstract

ABSTRACT Proteomics and targeted gene disruption were used to investigate the catabolism of benzene, styrene, biphenyl, and ethylbenzene in Rhodococcus jostii RHA1, a well-studied soil bacterium whose potent polychlorinated biphenyl (PCB)-transforming properties are partly due to the presence of the related Bph and Etb pathways. Of 151 identified proteins, 22 Bph/Etb proteins were among the most abundant in biphenyl-, ethylbenzene-, benzene-, and styrene-grown cells. Cells grown on biphenyl, ethylbenzene, or benzene contained both Bph and Etb enzymes and at least two sets of lower Bph pathway enzymes. By contrast, styrene-grown cells contained no Etb enzymes and only one set of lower Bph pathway enzymes. Gene disruption established that biphenyl dioxygenase (BPDO) was essential for growth of RHA1 on benzene or styrene but that ethylbenzene dioxygenase (EBDO) was not required for growth on any of the tested substrates. Moreover, whole-cell assays of the Δ bphAa and etbAa1 :: cmrA etbAa2 :: aphII mutants demonstrated that while both dioxygenases preferentially transformed biphenyl, only BPDO transformed styrene. Deletion of pcaL of the β-ketoadipate pathway disrupted growth on benzene but not other substrates. Thus, styrene and benzene are degraded via meta - and ortho -cleavage, respectively. Finally, catalases were more abundant during growth on nonpolar aromatic compounds than on aromatic acids. This suggests that the relaxed specificities of BPDO and EBDO that enable RHA1 to grow on a range of compounds come at the cost of increased uncoupling during the latter's initial transformation. The stress response may augment RHA1's ability to degrade PCBs and other pollutants that induce similar uncoupling.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3