Growth of Polychlorinated-Biphenyl-Degrading Bacteria in the Presence of Biphenyl and Chlorobiphenyls Generates Oxidative Stress and Massive Accumulation of Inorganic Polyphosphate

Author:

Chávez Francisco P.1,Lünsdorf Heinrich2,Jerez Carlos A.1

Affiliation:

1. Laboratory of Molecular Microbiology and Biotechnology and Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile

2. Division of Microbiology, GBF-National Research Centre for Biotechnology, Braunschweig, Germany

Abstract

ABSTRACT Inorganic polyphosphate (polyP) plays a significant role in increasing bacterial cell resistance to unfavorable environmental conditions and in regulating different biochemical processes. Using transmission electron microscopy of the polychlorinated biphenyl (PCB)-degrading bacterium Pseudomonas sp. strain B4 grown in defined medium with biphenyl as the sole carbon source, we observed large and abundant electron-dense granules at all stages of growth and following a shift from glucose to biphenyl or chlorobiphenyls. Using energy dispersive X-ray analysis and electron energy loss spectroscopy with an integrated energy-filtered transmission electron microscope, we demonstrated that these granules were mainly composed of phosphate. Using sensitive enzymatic methods to quantify cellular polyP, we confirmed that this polymer accumulates in PCB-degrading bacteria when they grow in the presence of biphenyl and chlorobiphenyls. Concomitant increases in the levels of the general stress protein GroEl and reactive oxygen species were also observed in chlorobiphenyl-grown cells, indicating that these bacteria adjust their physiology with a stress response when they are confronted with compounds that serve as carbon and energy sources and at the same time are chemical stressors.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3