Retention of Metabolites of 2′,3′-Didehydro-3′-Deoxy-4′-Ethynylthymidine, a Novel Anti-Human Immunodeficiency Virus Type 1 Thymidine Analog, in Cells

Author:

Wang Xin1,Tanaka Hiromichi2,Baba Masanori3,Cheng Yung-chi1

Affiliation:

1. Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520

2. School of Pharmaceutical Sciences, Showa University, Tokyo 142-8555, Japan

3. Division of Antiviral Chemotherapy, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan

Abstract

ABSTRACT 2′,3′-Didehydro-3′-deoxy-4′-ethynylthymidine (4′-Ed4T), a novel thymidine analog, has more potent anti-human immunodeficiency virus type 1 (HIV-1) activity than its progenitor, stavudine (d4T). The profile of the intracellular metabolites of 4′-Ed4T was qualitatively similar to that of zidovudine (AZT) but not to that of d4T, while after drug removal it showed more persistent anti-HIV activity than AZT or d4T in cell culture. When CEM cells were exposed to various concentrations of 4′-Ed4T, 4′-Ed4T was efficiently taken up by the cells and was readily phosphorylated to 4′-Ed4T monophosphate (4′-Ed4TMP), 4′-Ed4T diphosphate (4′-Ed4TDP), and 4′-Ed4T triphosphate (4′-Ed4TTP). Most importantly, 4′-Ed4TTP, the active metabolite of 4′-Ed4T, persisted significantly longer than 4′-Ed4TDP and 4′-Ed4TMP after drug removal. We further investigated the efflux profiles of 4′-Ed4T in the comparison with those of AZT in CEM cells. After drug removal, both 4′-Ed4T and AZT were effluxed from the cells in a time- and temperature-dependent manner. However, the efflux of 4′-Ed4T from cells was much less efficient than that of AZT. 4′-Ed4T was effluxed from cells only in its nucleoside form, while AZT was effluxed from cells in both its nucleoside and monophosphate forms. The mechanism-of-action study showed that the efflux of 4′-Ed4T or AZT nucleoside might be due to unknown nucleoside transporters which were not related to the equilibrative nucleoside transporters, while the efflux of AZT monophosphate might be due to multidrug resistance protein 4 (MRP4/ABCC4). The results demonstrated that no detectable 4′-Ed4TMP efflux and the less efficient efflux of 4′-Ed4T nucleoside from cells might be one of the biochemical determinants of its persistent antiviral activity in cell culture.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3