Escherichia coli susceptible to glycopeptide antibiotics

Author:

Shlaes D M1,Shlaes J H1,Davies J1,Williamson R1

Affiliation:

1. Département de Microbiologie Médicale, Faculté de Médecine, Université Pierre et Marie Curie, Paris, France.

Abstract

Mutants of Escherichia coli susceptible to vancomycin were isolated after mutagenesis with nitrosoguanidine. One such mutant was studied extensively. Multiple regression analysis of the relationship between physical properties of 20 glycopeptides and their in vitro activities against the vancomycin-susceptible mutant revealed a significant correlation with molecular mass (P = 0.007). pI, hydrophobicity, and affinity of the glycopeptide for the pentapeptide target were not as important for activity. This suggested that a block of access of the antibiotic to its target could be the major factor determining activity. Outer membrane proteins of the vancomycin-susceptible mutant, resistant parent, and revertant strains appeared normal. The mutant exhibited increased susceptibility to both erythromycin and fusidic acid which was lost in single-step revertants to vancomycin resistance. Polymyxin B nonapeptide was synergistic with erythromycin and fusidic acid against the parent and revertant but not against the susceptible mutant. Analysis of the susceptibilities of control strains of E. coli and Salmonella typhimurium with known defects in lipopolysaccharide (LPS) synthesis revealed that core LPS mutants (Re chemotype) were phenotypically similar to the E. coli mutant under study. However, the LPS core of the mutant migrated slightly less rapidly on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than wild-type or revertant core LPS and did not resemble Re chemotype LPS core obtained from Salmonella rfaC and rfaD mutants. These data suggest that defects in LPS core structure other than loss of heptose moieties may also be important in loss of resistance to large, hydrophilic molecules such as glycopeptides.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Reference24 articles.

1. Hydrolysis of linear, un-cross-linked peptidoglycans by endogenous bacterial N-acetylmuramoylhydrolases;Barrett J. F.;J. Bacteriol.,1984

2. Routes of quinolone permeation in Escherichia coli;Chapman J. S.;Antimicrob. Agents Chemother.,1988

3. Affinity chromatography of murein precursors on vancomycin-sepharose;DePedro M. A.;FEMS Microbiol Lett.,1980

4. A40926, a new glycopeptide antibiotic with anti-Neisseria activity;Goldstein B. P.;Antimicrob. Agents Chemother.,1987

5. J;Hitchcock P. J.;Bacteriol.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3