Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1

Author:

Zaborina O1,Latus M1,Eberspächer J1,Golovleva L A1,Lingens F1

Affiliation:

1. Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino.

Abstract

The enzyme which cleaves the benzene ring of 6-chlorohydroxyquinol was purified to apparent homogeneity from an extract of 2,4,6-trichlorophenol-grown cells of Streptomyces rochei 303. Like the analogous enzyme from Azotobacter sp. strain GP1, it exhibited a highly restricted substrate specificity and was able to cleave only 6-chlorohydroxyquinol and hydroxyquinol and not catechol, chlorinated catechols, or pyrogallol. No extradiol-cleaving activity was observed. In contrast to 6-chlorohydroxyquinol 1,2-dioxygenase from Azotobacter sp. strain GP1, the S. rochei enzyme had a distinct preference for 6-chlorohydroxyquinol over hydroxyquinol (kcat/Km = 1.2 and 0.57 s-1.microM-1, respectively). The enzyme from S. rochei appears to be a dimer of two identical 31-kDa subunits. It is a colored protein and was found to contain 1 mol of iron per mol of enzyme. The NH2-terminal amino acid sequences of 6-chlorohydroxyquinol 1,2-dioxygenase from S. rochei 303 and from Azotobacter sp. strain GP1 showed a high degree of similarity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference38 articles.

1. Catabolism of aromatic acids in Trichosporon cutaneum;Anderson J. J.;J. Bacteriol.,1980

2. Apajalahti J. 1987. Chlorophenol metabolism of a polychlorophenol degrader Rhodococcus chlorophenolicus sp. nov. Ph.D. thesis. Department of General Microbiology University of Helsinki Finland.

3. Complete degradation of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus;Apajalahti J.;J. Bacteriol.,1987

4. Detoxification mechanisms for 1,2,4-benzenetriol employed by a Rhodococcus sp. BPG-8;Armstrong S.;Arch. Microbiol.,1993

5. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding;Bradford M. M.;Anal. Biochem.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3