Catabolism of aromatic acids in Trichosporon cutaneum

Author:

Anderson J J,Dagley S

Abstract

Trichosporon cutaneum readily metabolized protocatechuate, homoprotocatechuate, and gentisate, but lacked ring fission dioxygenases for these compounds. Benzoic, salicylic, 2,3-dihydroxybenzoic, and gentisic acids were converted into beta-ketoadipic acid before entry into the Krebs cycle. Benzoic acid gave rise successively to 4-hydroxybenzoic acid, protocatechuic acid, and hydroxyquinol (1,3,4-trihydroxybenzene), which underwent ring fission to maleylacetic acid. Salicylate and 2,3-dihydroxybenzoate were both initially metabolized to give catechol. 2,3-Dihydroxybenzoate was the substrate for a specific nonoxidative decarboxylase induced by salicylate, although 2,3-dihydroxybenzoate was not a catabolite of salicylate. Gentisate was metabolized to maleylacetic acid and was also readily attacked by salicylate hydroxylase at each stage of a partial purification procedure. Phenylacetic acid was degraded through 3-hydroxyphenylacetic, homogentisic, and maleylacetoacetic acids to acetoacetic and fumaric acids. All the reactions of these catabolic sequences were catalyzed by cell extracts, supplemented with reduced pyridine nucleotide coenzymes where necessary, except for the hydroxylations of benzoic and phenylacetic acids which were demonstrated with cell suspensions and isotopically labeled substrates.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference25 articles.

1. The metabolism of aromatic acids by micro-organism: metabolic pathways in the fungi;Cain R. B.;Biochem. J.,1968

2. Oxidation of homogentisic acid by cell-free extracts of a vibrio;Chapman P. J.;J. Gen. Microbiol.,1962

3. Metabolism of resorcinylic compounds by bacteria: alternative pathways for resorcinol catabolism in Pseudononasputida;Chapman P. J.;J. Bacteriol.,1974

4. A biochemical approach to some problems of environmental pollution;Dagley S.;Essays Biochem.,1975

5. Microbial degradation of organic compounds in the biosphere;Dagley S.;Surv. Prog. Chem.,1977

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3