Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010

Author:

Binns A N1,Beaupré C E1,Dale E M1

Affiliation:

1. Department of Biology, University of Pennsylvania, Philadelphia 19104-6018, USA.

Abstract

The transfer of DNA from Agrobacterium tumefaciens into a plant cell requires the activities of several virulence (vir) genes that reside on the tumor-inducing (Ti) plasmid. The putative transferred intermediate is a single-stranded DNA (T strand), covalently attached to the VirD2 protein and coated with the single-stranded DNA-binding protein, VirE2. The movement of this intermediate out of Agrobacterium cells and into plant cells requires the expression of the virB operon, which encodes 11 proteins that localize to the membrane system. Our earlier studies showed that the IncQ broad-host-range plasmid RSF1010, which can be transferred from Agrobacterium cells to plant cells, inhibits the transfer of T-DNA from pTiA6 in a fashion that is reversed by overexpression of virB9, virB10, and virB11. Here, we examined the specificity of this inhibition by following the transfer of other T-DNA molecules. By using extracellular complementation assays, the effects of RSF1010 on movement of either VirE2 or an uncoated T strand from A. tumefaciens were also monitored. The RSF1010 derivative plasmid pJW323 drastically inhibited the capacity of strains to serve as VirE2 donors but only partially inhibited T-strand transfer from virE2 mutants. Further, we show that all the virB genes tested are required for the movement of VirE2 and the uncoated T strand as assayed by extracellular complementation. Our results are consistent with a model in which the RSF1010 plasmid, or intermediates from it, compete with the T strand and VirE2 for a common transport site.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3