Identification of a Carboxy-Terminal Glutamine-Rich Domain in Agrobacterium tumefaciens Coupling Protein VirD4 Required for Recognition of T-Strand DNA and Not VirE2 as a Substrate for Transfer to Plant Cells

Author:

Das Anath1ORCID

Affiliation:

1. Department of Biochemistry, Molecular Biology and Biophysics, and Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN 55455, U.S.A.

Abstract

Agrobacterium tumefaciens transfers DNA and proteins to a plant cell inciting crown gall tumor disease on most plants. VirD4 targets the DNA and protein substrates to a type IV secretion (T4S) apparatus for translocation into the plant cell. Several bacteria with VirD4 homologs use T4S for intercellular export of microbial macromolecules to eukaryotic and prokaryotic hosts. How the VirD4 proteins recognize the diverse substrates is not well understood. To identify functional domains of A. tumefaciens pTiA6 VirD4, we introduced random 19-codon and targeted 10-codon insertions throughout the coding region. Analysis of 21 mutants showed that only the carboxy-terminal end of VirD4 is tolerant of an insertion. Sequence comparison of VirD4 proteins of Agrobacterium spp. and their close relative, Rhizobium etli, showed that these proteins contain a highly conserved C-terminal end, but the immediate upstream regions share no discernible sequence similarity. The conserved region sequence is rich in the amino acid glutamine (6/13 Q). Using site-specific and deletion mutagenesis, we demonstrated that the conserved Q-rich region is required for VirD4 function and for the specific recognition of VirD2-linked T-strand DNA as a substrate for translocation to plants. The Q-rich region is not required for the transfer of a second A. tumefaciens substrate, VirE2, to plants or a promiscuous Escherichia coli IncQ plasmid to another A. tumefaciens strain. We identified Q-rich sequences at or near the C terminus of several VirD4 homologs, including the E. coli F plasmid TraD. In F TraD, the Q-rich sequence maps to a region required specifically for the conjugative transfer of the F plasmid.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3