Caspofungin Treatment of Aspergillus fumigatus Results in ChsG-Dependent Upregulation of Chitin Synthesis and the Formation of Chitin-Rich Microcolonies

Author:

Walker Louise A.,Lee Keunsook K.,Munro Carol A.,Gow Neil A. R.

Abstract

ABSTRACTTreatment ofAspergillus fumigatuswith echinocandins such as caspofungin inhibits the synthesis of cell wall β-1,3-glucan, which triggers a compensatory stimulation of chitin synthesis. Activation of chitin synthesis can occur in response to sub-MICs of caspofungin and to CaCl2and calcofluor white (CFW), agonists of the protein kinase C (PKC), and Ca2+-calcineurin signaling pathways.A. fumigatusmutants with thechsgene (encoding chitin synthase) deleted (ΔAfchs) were tested for their response to these agonists to determine the chitin synthase enzymes that were required for the compensatory upregulation of chitin synthesis. Only the ΔAfchsGmutant was hypersensitive to caspofungin, and all other ΔAfchsmutants tested remained capable of increasing their chitin content in response to treatment with CaCl2and CFW and caspofungin. The resulting increase in cell wall chitin content correlated with reduced susceptibility to caspofungin in the wild type and all ΔAfchsmutants tested, with the exception of the ΔAfchsGmutant, which remained sensitive to caspofungin.In vitroexposure to the chitin synthase inhibitor, nikkomycin Z, along with caspofungin demonstrated synergistic efficacy that was againAfChsG dependent. Dynamic imaging using microfluidic perfusion chambers demonstrated that treatment with sub-MIC caspofungin resulted initially in hyphal tip lysis. However, thickened hyphae emerged that formed aberrant microcolonies in the continued presence of caspofungin. In addition, intrahyphal hyphae were formed in response to echinocandin treatment. Thesein vitrodata demonstrate thatA. fumigatushas the potential to survive echinocandin treatmentin vivobyAfChsG-dependent upregulation of chitin synthesis. Chitin-rich cells may, therefore, persist in human tissues and act as the focus for breakthrough infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3