Pharmacodynamics of Posaconazole in Experimental Invasive Pulmonary Aspergillosis: Utility of Serum Galactomannan as a Dynamic Endpoint of Antifungal Efficacy

Author:

Gastine SilkeORCID,Hope WilliamORCID,Hempel Georg,Petraitiene Ruta,Petraitis Vidmantas,Mickiene Diana,Bacher John,Walsh Thomas J.,Groll Andreas H.

Abstract

ABSTRACT Aspergillus galactomannan antigenemia is an accepted tool for the diagnosis of invasive pulmonary aspergillosis (IPA) in neutropenic patients. Little is known, however, about the utility of this biomarker to assess the efficacy of antifungal therapies. The pharmacokinetics (PK) and pharmacodynamics (PD) of posaconazole in treatment and prophylaxis were investigated in the persistently neutropenic rabbit model of Aspergillus fumigatus IPA at doses between 2 and 20 mg/kg per day. Sparse plasma sampling was used to obtain PK data at steady state, and the serum galactomannan index (GMI), as a dynamic endpoint of antifungal response, was obtained every other day, in addition to conventional outcome parameters including survival and fungal tissue burden. Nonparametric PK/PD model building was performed using the Pmetrics package in R. A one-compartment model with linear elimination best described the PK of posaconazole. The PD effect of posaconazole exposure in plasma on the GMI in serum was best described by dynamic Hill functions reflecting growth and killing of the fungus. Through calculations of the area under the concentration-time curve from 0 to 24 h (AUC0–24) at steady state, the exposure-response relationship between posaconazole and the GMI for treatment followed a sigmoidal function with an asymptote forming above an AUC0–24 of 30 mg · h/liter. All prophylactic doses were able to control the fungal burden. A nonparametric population PK/PD model adequately described the effect of posaconazole in prophylaxis and treatment of experimental IPA. An AUC0–24 greater than 30 mg · h/liter was associated with adequate resolution of the GMI, which well supports previously suggested exposure-response relationships in humans.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3