The Escherichia coli O157 Flagellar Regulatory Gene flhC and Not the Flagellin Gene fliC Impacts Colonization of Cattle

Author:

Dobbin Heather S.1,Hovde Carolyn J.1,Williams Christopher J.2,Minnich Scott A.1

Affiliation:

1. Department of Microbiology, Molecular Biology, and Biochemistry

2. Department of Statistics, University of Idaho, Moscow, Idaho 83844-3052

Abstract

ABSTRACT A virulent European Escherichia coli O157:H isolate is nonmotile due to a 12-bp deletion in the flagellar regulatory gene flhC . To investigate the contribution of flhC in the relationship between E. coli O157:H7 and cattle, we constructed a similar flhC regulatory mutant in the well-characterized strain ATCC 43894. There was no difference in the growth rate between the wild type and this regulatory mutant, but phenotypic arrays showed substrate utilization differences. Survival in the bovine gastrointestinal tract and colonization of the rectoanal junction mucosa were assessed. Mixtures of both strains were given orally or rectally to steers or administered into the rumen of cattle dually cannulated at the rumen and duodenum. One day post-oral dose, most rectal/fecal isolates (74%) were the regulatory mutant, but by 3 days post-oral dose and throughout the 42-day experiment, ≥80% of the isolates were wild type. Among steers given a rectal application of both strains, wild-type isolates were the majority of isolates recovered on all days. The regulatory mutant survived better than the wild type in both the rumen and duodenum. To test the role of motility, a filament mutant (Δ fliC ) was constructed and similar cattle experiments were performed. On all days post-oral dose, the majority of isolates (64% to 98%) were the filament mutant. In contrast, both strains were recovered equally post-rectal application. Thus, the regulatory mutant survived passage through the bovine gastrointestinal tract better than the wild type but failed to efficiently colonize cattle, and the requirement of flhC for colonization was not dependent on a functional flagellum.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3