Cap-Independent Translational Enhancement by the 3′ Untranslated Region of Red Clover Necrotic Mosaic Virus RNA1

Author:

Mizumoto Hiroyuki1,Tatsuta Masahiro1,Kaido Masanori1,Mise Kazuyuki1,Okuno Tetsuro1

Affiliation:

1. Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan

Abstract

ABSTRACT Red clover necrotic mosaic virus (RCNMV) is a member of the genus Dianthovirus and has a bipartite positive-sense genomic RNA with 3′ ends that are not polyadenylated. In this study, we show that both genomic RNA1 and RNA2 lack a 5′ cap structure and that uncapped in vitro transcripts of RCNMV RNA1 replicated to a level comparable to that for capped transcripts in cowpea protoplasts. Because the 5′ cap and 3′ poly(A) tail play important roles in the translation of many eukaryotic mRNAs, genomic RNAs of RCNMV should contain an element(s) responsible for 5′ cap- and poly(A) tail-independent translation of viral protein. By using a luciferase reporter assay system in vivo, we showed that the 3′ untranslated region (UTR) of RNA1 alone significantly enhanced translation of the luciferase reporter gene in the absence of the 5′ cap structure. Deletion studies revealed that the middle region (between nucleotides 3596 and 3732) in the 3′ UTR, designated the 3′ translation element of Dianthovirus RNA1 (3′TE-DR1), plays an important role in cap-independent translation. This region contained a stem-loop structure conserved among members of the genera Dianthovirus and Luteovirus . A five-base substitution in the loop abolished cap-independent translational activity, as reported for a luteovirus, indicating that this stem-loop is one of the functional structures in the 3′TE-DR1 involved in cap-independent translation. Finally, we suggest that cap-independent translational activity is required for RCNMV RNA1 replication in protoplasts.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3