Structure-Based Regulatory Role for the 5′UTR of RCNMV RNA2

Author:

Im Jennifer S. H.1,Sheppard Jasmine R.1ORCID,White K. Andrew1

Affiliation:

1. Department of Biology, York University, Toronto, ON M3J 1P3, Canada

Abstract

Red clover necrotic mosaic virus (RCNMV) is a segmented positive-strand RNA virus consisting of RNA1 and RNA2. Previous studies demonstrated that efficient translation of RCNMV RNA2 requires de novo synthesis of RNA2 during infections, suggesting that RNA2 replication is required for its translation. We explored a potential mechanism underlying the regulation of replication-associated translation of RNA2 by examining RNA elements in its 5′ untranslated region (5′UTR). Structural analysis of the 5′UTR suggested that it can form two mutually exclusive configurations: a more thermodynamically stable conformation, termed the 5′-basal stem structure (5′BS), in which 5′-terminal sequences are base paired, and an alternative conformation, where the 5′-end segment is single stranded. Functional mutational analysis of the 5′UTR structure indicated that (i) 43S ribosomal subunits enter at the very 5′-end of RNA2; (ii) the alternative conformation, containing unpaired 5′-terminal nucleotides, mediates efficient translation; (iii) the 5′BS conformation, with a paired 5′-end segment, supresses translation; and (iv) the 5′BS conformation confers stability to RNA2 from 5′-to-3′ exoribonuclease Xrn1. Based on our results, we suggest that during infections, newly synthesized RNA2s transiently adopt the alternative conformation to allow for efficient translation, then refold into the 5′BS conformation, which supresses translation and promotes efficient RNA2 replication. The potential advantages of this proposed 5′UTR-based regulatory mechanism for coordinating RNA2 translation and replication are discussed.

Funder

NSERC Discovery Grant

Ontario Graduate Scholarship

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3