Formation of 4-Hydroxy-2,5-Dimethyl-3[2H]-Furanone by Zygosaccharomyces rouxii : Identification of an Intermediate

Author:

Hauck Tobias1,Brühlmann Fredi2,Schwab Wilfried1

Affiliation:

1. Lehrstuhl für Lebensmittelchemie, Universität Würzburg, 97074 Würzburg, Germany

2. Firmenich SA, 1211 Geneva, Switzerland

Abstract

ABSTRACT The formation of the important flavor compound 4-hydroxy-2,5-dimethyl-3[2H]-furanone (HDMF; Furaneol) from d -fructose-1,6-bisphosphate by the yeast Zygosaccharomyces rouxii was studied with regard to the identification of intermediates present in the culture medium. Addition of o -phenylenediamine, a trapping reagent for α-dicarbonyls, to the culture medium and subsequent analysis by high-pressure liquid chromatography with diode array detection revealed the formation of three quinoxaline derivatives derived from d -fructose-1,6-bisphosphate under the applied growth conditions (30°C; pH 4 to 5). Isolation and characterization of these compounds by tandem mass spectrometry and nuclear magnetic resonance spectroscopy led to the identification of phosphoric acid mono-(2,3,4-trihydroxy-4-quinoxaline-2-yl-butyl) ester (Q1), phosphoric acid mono-[2,3-dihydroxy-3-(3-methyl-quinoxaline-2-yl)-propyl] ester (Q2), and phosphoric acid mono-[2-hydroxy-3-(3-methyl-quinoxaline-2-yl)-propyl] ester (Q3). Q1 and Q2 were formed independently of Z. rouxii cells, whereas Q3 was detected only in incubation systems containing the yeast. Identification of Q2 demonstrated for the first time the chemical formation of 1-deoxy-2,3-hexodiulose-6-phosphate in the culture medium, a generally expected but never identified intermediate in the formation pathway of HDMF. Since HDMF was detected only in the presence of Z. rouxii cells, additional enzymatic steps were presumed. Incubation of periplasmic and cytosolic protein extracts obtained from yeast cells with d -fructose-1,6-bisphosphate led to the formation of HDMF, implying the presence of the required enzymes in both extracts.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3