High Glucose Is a Stimulation Signal of the Salt–Tolerant Yeast Zygosaccharomyces rouxii on Thermoadaptive Growth

Author:

Yan Zhenzhen1,Xiao Xiong1,Liu Quan1,Wei Yangjian1,Cai DongBo2,Chen Xiong1,Li Xin1

Affiliation:

1. Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China

2. State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430068, China

Abstract

The salt–tolerant yeast Zygosaccharomyces rouxii is a typical aroma–producing yeast used in food brewing, but its mechanism of high temperature tolerance is still unclear. In this study, the response mechanism of Z. rouxii to glucose under high temperature stress at 40 °C was explored, based on the total synthetic lowest–nutrient medium. The results of the growth curves and scanning electron microscopy showed that high glucose was necessary for Z. rouxii to restore growth under high temperature stress, with the biomass at 300 g/L of glucose (OD600, 120h = 2.44 ± 0.26) being 8.71 times higher than that at 20 g/L (OD600, 120h = 0.28 ± 0.08). The results of the transcriptome analysis, combined with RT–qPCR, showed that the KEGG analysis of differentially expressed genes was enriched in pathways related to glucose metabolism, and high glucose (300 g/L) could effectively stimulate the gene expression of glucose transporters, trehalose synthesis pathways, and xylitol synthesis pathways under a high temperature, especially the expression of the glucose receptor gene RGT2 (up–regulated 193.7 times at 12 h). The corresponding metabolic characteristics showed that the contents of intracellular metabolites, such as glucose (Cmax, 6h = 6.50 ± 0.12 mg/g DCW), trehalose (Cmax, 8h = 369.00 ± 17.82 μg/g DCW), xylitol (Cmax, 8h = 1.79 ± 0.27 mg/g DCW), and glycerol (Cmax, 8h = 268.10 ± 44.49 μg/g DCW), also increased with time. The accumulation of acetic acid, as the main product of overflow metabolism under high temperature stress (intracellular Cmax, 2h = 126.30 ± 10.96 μg/g DCW; extracellular Cmax, 12h = 499.63 ± 27.16 mg/L), indicated that the downstream glycolysis pathway was active. Compared with the normal physiological concentration of glucose, a high glucose concentration can effectively stimulate the gene expression and metabolism of salt–tolerant Z. rouxii under high–temperature conditions to restore growth. This study helps to deepen the current understanding of the thermoadaptive growth mechanism of salt–tolerant Z. rouxii.

Funder

State Key Laboratory of Biocatalysis and Enzyme Engineering

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3