Genotypic Diversity of Clinical Actinomyces Species: Phenotype, Source, and Disease Correlation among Genospecies

Author:

Clarridge Jill E.123,Zhang Qing1

Affiliation:

1. Department of Pathology

2. Department of Molecular Virology and Microbiology, Baylor College of Medicine

3. Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center, Houston, Texas

Abstract

ABSTRACT We determined the frequency distribution of Actinomyces spp. recovered in a routine clinical laboratory and investigated the clinical significance of accurate identification to the species level. We identified 92 clinical strains of Actinomyces , including 13 strains in the related Arcanobacterium-Actinobaculum taxon, by 16S rRNA gene sequence analysis and recorded their biotypes, sources, and disease associations. The clinical isolates clustered into 21 genogroups. Twelve genogroups (74 strains) correlated with a known species, and nine genogroups (17 strains) did not. The individual species had source and disease correlates. Actinomyces turicensis was the most frequently isolated species and was associated with genitourinary tract specimens, often with other organisms and rarely with inflammatory cells. Actinomyces radingae was most often associated with serious, chronic soft tissue abscesses of the breast, chest, and back. Actinomyces europaeus was associated with skin abscesses of the neck and genital areas. Actinomyces lingnae , Actinomyces gravenitzii , Actinomyces odontolyticus , and Actinomyces meyeri were isolated from respiratory specimens, while A. odontolyticus -like strains were isolated from diverse sources. Several of the species were commonly coisolated with a particular bacterium: Actinomyces israelii was the only Actinomyces spp. coisolated with Actinobacillus ( Haemophilus ) actinomycetemcomitans ; Actinomyces meyeri was coisolated with Peptostreptococcus micros and was the only species other than A. israelii associated with sulfur granules in histological specimens. Most genogroups had consistent biotypes (as determined with the RapID ANA II system); however, strains were misidentified, and many codes were not in the database. One biotype was common to several genogroups, with all of these isolates being identified as A. meyeri . Despite the recent description of new Actinomyces spp., 19% of the isolates recovered in our routine laboratory belonged to novel genospecies. One novel group with three strains, Actinomyces houstonensis sp. nov., was phenotypically similar to A. meyeri and A. turicensis but was genotypically closest to Actinomyces neuii. A. houstonensis sp. nov. was associated with abscesses. Our data documented consistent site and disease associations for 21 genogroups of Actinomyces spp. that provide greater insights into appropriate treatments. However, we also demonstrated a complexity within the Actinomyces genus that compromises the biochemical identification of Actinomyces that can be performed in most clinical laboratories. It is our hope that this large group of well-defined strains will be used to find a simple and accurate biochemical test for differentiation of the species in routine laboratories.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3