Fungal metabolism of tert-butylphenyl diphenyl phosphate

Author:

Heitkamp M A,Freeman J P,McMillan D C,Cerniglia C E

Abstract

The fungal metabolism of tert-butylphenyl diphenyl phosphate (BPDP) was studied. Cunninghamella elegans was incubated with BPDP for 7 days, and the metabolites formed were separated by thin-layer, gas-liquid, or high-pressure liquid chromatography and identified by 1H nuclear magnetic resonance and mass spectral techniques. C. elegans metabolized BPDP predominantly at the tert-butyl moiety to form the carboxylic acid 4-(2-carboxy-2-propyl)triphenyl phosphate. In addition, 4-hydroxy-4'-(2-carboxy-2-propyl)triphenyl phosphate, triphenyl phosphate, diphenyl phosphate, 4-(2-carboxy-2-propyl)diphenyl phosphate, 2-(4-hydroxyphenyl)-2-methyl propionic acid, and phenol were detected. Similar metabolites were found in the 28 fungal cultures which were examined for their ability to metabolize BPDP. Experiments with [14C]BPDP indicated that C. elegans metabolized 70% of the BPDP after 7 days and that the ratio of organic-soluble metabolites to water-soluble metabolites was 8:2. The results indicate that fungi preferentially oxidize BPDP at the alkyl side chain and at the aromatic rings to form hydroxylated derivatives. The trace levels of mono- and diaryl metabolites and the low level of phosphotriesterase activity measured in C. elegans indicate that phosphatase cleavage is a minor pathway for fungal metabolism of BPDP.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference28 articles.

1. Use and development of polychlorinated biphenyls;Broadhurst M. G.;Environ. Health Perspect.,1972

2. Phosphodiesterase activity of soils. Soil Sci;Browman M. G.;Soc. Am. J.,1978

3. Microbial metabolism of polycyclic aromatic hydrocarbons;Cerniglia C. E.;Adv. Appl. Microbiol.,1984

4. Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons;Cerniglia C. E.;Appl. Ehviron. Microbiol.,1982

5. Transformation of 1- and 2-methylnaphthalene by Cunninghamella elegans;Cerniglia C. E.;Appl. Environ. Microbiol.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3