Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons

Author:

Cerniglia C E,Freeman J P,Mitchum R K

Abstract

Cunninghamella elegans oxidized naphthalene to ethyl acetate-soluble and water-soluble metabolites. Experiments with [14C]-naphthalene indicated that 21% of the substrate was converted into metabolites. The ratio of organic-soluble metabolites to water-soluble metabolites was 76:24. The major ethyl acetate-soluble naphthalene metabolites were trans-1,2-dihydroxy-1,2-dihydro-naphthalene, 4-hydroxy-1-tetralone, and 1-naphthol. Enzymatic treatment of the aqueous phase with either arylsulfatase or beta-glucuronidase released metabolites of naphthalene that were extractable with ethyl acetate. In both cases, the major metabolite was 1-naphthol. The ratio of water-soluble sulfate conjugates to water-soluble glucuronide conjugates was 1:1. Direct analysis of the aqueous phase by high-pressure liquid and thin-layer chromatographic and mass spectrometric techniques indicated that 1-naphthyl sulfate and 1-naphthyl glucuronic acid were major water-soluble metabolites formed from the fungal metabolism of naphthalene. C. elegans oxidized biphenyl primarily to 4-hydroxy biphenyl. Deconjugation experiments with biphenyl water-soluble metabolites indicated that the glucuronide and sulfate ester of 4-hydroxy biphenyl were metabolites. The data demonstrate that sulfation and glucuronidation are major pathways in the metabolism of aromatic hydrocarbons by fungi.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference12 articles.

1. Cerniglia C. E. 1981. Aromatic hydrocarbons: metabolism by bacteria fungi and algae p. 321-361. In Reviews in Biochemical Toxicology (E. Hodgson J. R. Bend R. M. Philpot) Vol. 3. Elsevier/North Holland New York.

2. Metabolism of naphthalene by Cunninghamella elegans;Cerniglia C. E.;AppI. Environ. Microbiol.,1977

3. Metabolism of naphthalene by cell extracts of Cunninghamella elegans;Cerniglia C. E.;Arch. Biochem. Biophys.,1978

4. Fungal transformation of naphthalene;Cerniglia C. E.;Arch. Microbiol.,1978

5. Fungal metabolism of biphenyl;Dodge R. H.;Biochem. J.,1979

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3