Upstream Stimulatory Factor Regulates Major Histocompatibility Complex Class I Gene Expression: the U2ΔE4 Splice Variant Abrogates E-Box Activity

Author:

Howcroft T. Kevin1,Murphy Charles1,Weissman Jocelyn D.1,Huber Sam J.1,Sawadogo Michèle2,Singer Dinah S.1

Affiliation:

1. Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1360, 1 and

2. Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 770302

Abstract

ABSTRACT The tissue-specific expression of major histocompatibility complex class I genes is determined by a series of upstream regulatory elements, many of which remain ill defined. We now report that a distal E-box element, located between bp −309 and −314 upstream of transcription initiation, acts as a cell type-specific enhancer of class I promoter activity. The class I E box is very active in a neuroblastoma cell line, CHP-126, but is relatively inactive in the HeLa epithelial cell line. The basic helix-loop-helix leucine zipper proteins upstream stimulatory factor 1 (USF1) and USF2 were shown to specifically recognize the class I E box, resulting in the activation of the downstream promoter. Fine mapping of USF1 and USF2 amino-terminal functional domains revealed differences in their abilities to activate the class I E box. Whereas USF1 contained only an extended activation domain, USF2 contained both an activation domain and a negative regulatory region. Surprisingly, the naturally occurring splice variant of USF2 lacking the exon 4 domain, U2ΔE4, acted as a dominant-negative regulator of USF-mediated activation of the class I promoter. This latter activity is in sharp contrast to the known ability of U2ΔE4 to activate the adenovirus major late promoter. Class I E-box function is correlated with the relative amount of U2ΔE4 in a cell, leading to the proposal that U2ΔE4 modulates class I E-box activity and may represent one mechanism to fine-tune class I expression in various tissues.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3