Tgf-β1 transcriptionally promotes 90K expression: possible implications for cancer progression

Author:

Grassadonia Antonino,Graziano VincenzoORCID,Pagotto SaraORCID,Veronese AngeloORCID,Giuliani Cesidio,Marchisio Marco,Lanuti Paola,De Tursi Michele,D’Egidio Maurizia,Di Marino Pietro,Brocco Davide,Vici Patrizia,De Lellis Laura,Cama Alessandro,Natoli Clara,Tinari Nicola

Abstract

AbstractThe 90K protein, also known as Mac-2 BP or LGALS3BP, can activate the immune response in part by increasing major histocompatibility (MHC) class I levels. In studies on a non-immune cell model, the rat FRTL-5 cell line, we observed that transforming growth factor (TGF)-β1, like γ-interferon (IFN), increased 90K levels, despite its immunosuppressive functions and the ability to decrease MHC class I. To explain this paradoxical result, we investigated the mechanisms involved in the TGF-β1 regulation of 90K expression with the aim to demonstrate that TGF-β1 utilizes different molecular pathways to regulate the two genes. We found that TGF-β1 was able to increase the binding of Upstream Stimulatory Factors, USF1 and USF2, to an E-box element, CANNTG, at −1926 to −1921 bp, upstream of the interferon response element (IRE) in the 90K promoter. Thyrotropin (TSH) suppressed constitutive and γ-IFN-induced 90K expression by decreasing USF binding to the E-box. TGF-β1 was able to overcome TSH suppression at the transcriptional level by increasing USF binding to the E-box. We suggest that the ability of TGF-β1 to increase 90K did not result in an increase in MHC class I because of a separate suppressive action of TGF-β1 directly on the MHC class I gene. We propose that the increased levels of 90K may play a role, rather than in immune response, in the context of the TGF-β1-induced changing of the cellular microenvironment that predisposes to cell motility and cancer progression. Consistently, analyzing the publicly available cancer patient data sets cBioPortal, we found that 90K expression directly correlated with TGF-β1 and USFs and that high levels of 90K were significantly associated with increased mortality in patients affected by different types of cancer.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3