Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms

Author:

Nielsen K M1,van Weerelt M D1,Berg T N1,Bones A M1,Hagler A N1,van Elsas J D1

Affiliation:

1. Unigen-Center for Molecular Biology, Norwegian University of Science and Technology, Trondheim, Norway.

Abstract

A small microcosm, based on optimized in vitro transformation conditions, was used to study the ecological factors affecting the transformation of Acinetobacter calcoaceticus BD413 in soil. The transforming DNA used was A. calcoaceticus homologous chromosomal DNA with an inserted gene cassette containing a kanamycin resistance gene, nptII. The effects of soil type (silt loam or loamy sand), bacterial cell density, time of residence of A. calcoaceticus or of DNA in soil before transformation, transformation period, and nutrient input were investigated. There were clear inhibitory effects of the soil matrix on transformation and DNA availability. A. calcoaceticus cells reached stationary phase and lost the ability to be transformed shortly after introduction into sterile soil. The use of an initially small number of A. calcoaceticus cells and nutrients, resulting in bacterial growth, enhanced transformation frequencies within a limited period. The availability of introduced DNA for transformation of A. calcoaceticus cells disappeared within a few hours in soil. Differences in transformation frequencies between soils were found; A. calcoaceticus cells were transformed at a higher rate and for a longer period in a silt loam than in a loamy sand. Physical separation of DNA and A. calcoaceticus cells had a negative effect on transformation. Transformation was also detected in nonsterile soil microcosms, albeit only in the presence of added nutrients and at a reduced frequency. These results suggest that chromosomal DNA released into soil rapidly becomes unavailable for transformation of A. calcoaceticus. In addition, strain BD413 quickly loses the ability to receive, stabilize, and/or express exogenous DNA after introduction into soil.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3