Horizontal gene transfer facilitates the spread of extracellular antibiotic resistance genes in soil

Author:

Kittredge Heather A.,Dougherty Kevin M.,Evans Sarah E.

Abstract

AbstractAntibiotic resistance genes (ARGs) are ubiquitous in the environment and pose a serious risk to human and veterinary health. While many studies focus on the spread of live antibiotic resistant bacteria throughout the environment, it is unclear whether extracellular ARGs from dead cells can transfer to live bacteria to facilitate the evolution of antibiotic resistance in nature. Here, we inoculate antibiotic-free soil with extracellular ARGs (eARGs) from dead Pseudeononas stutzeri cells and track the evolution of antibiotic resistance via natural transformation – a mechanism of horizontal gene transfer involving the genomic integration of eARGs. We find that transformation facilitates the rapid evolution of antibiotic resistance even when eARGs occur at low concentrations (0.25 μg g-1 soil). However, when eARGs are abundant, transformation increases substantially. The evolution of antibiotic resistance was high under soil moistures typical in terrestrial systems (5%-30% gravimetric water content) and was only inhibited at very high soil moistures (>30%). While eARGs transformed into live cells at a low frequency, exposure to a low dose of antibiotic allowed a small number of transformants to reach high abundances in laboratory populations, suggesting even rare transformation events pose a risk to human health. Overall, this work demonstrates that dead bacteria and their eARGs are an overlooked path to antibiotic resistance, and that disinfection alone is insufficient to stop the spread of antibiotic resistance. More generally, the spread of eARGs in antibiotic-free soil suggests that transformation allows genetic variants to establish at low frequencies in the absence of antibiotic selection.ImportanceOver the last decade, antibiotics in the environment have gained increasing attention because they can select for drug-resistant phenotypes that would have otherwise gone extinct. To counter this effect, bacterial populations exposed to antibiotics often undergo disinfection. However, the release of extracellular antibiotic resistance genes (eARGs) into the environment following disinfection can promote the transfer of eARGs through natural transformation. This phenomenon is well-documented in wastewater and drinking water, but yet to be investigated in soil. Our results directly demonstrate that eARGs from dead bacteria are an important, but often overlooked source of antibiotic resistance in soil. We conclude that disinfection alone is insufficient to prevent the spread of ARGs. Special caution should be taken in releasing antibiotics into the environment, even if there are no live antibiotic resistant bacteria in the community, as transformation allows DNA to maintain its biological activity past microbial death.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3