Lysogeny in Bradyrhizobium japonicum and Its Effect on Soybean Nodulation

Author:

Abebe H. M.1,Sadowsky M. J.1,Kinkle B. K.1,Schmidt E. L.1

Affiliation:

1. Departments of Microbiology and Soil Science, University of Minnesota, St. Paul, Minnesota 55108

Abstract

Rhizobiophage V, isolated from soil in the vicinity of soybean roots, was strongly lytic on Bradyrhizobium japonicum 123B (USDA 123) but only mildly lytic on strain L4-4, a chemically induced small-colony mutant of 123. Numerous bacteriophage-resistant variants were isolated from L4-4 infected with phage V; two were studied in detail and shown to be lysogenic. The two, L4-4 (V5) and L4-4 (V12), are the first reported examples of temperate-phage infection in B. japonicum. Phage V and its derivative phages V5 and V12 were closely related on the basis of common sensitivity to 0.01 M sodium citrate and phage V antiserum, phage immunity tests, and apparently identical morphology when examined by electron microscopy. However, the three phages differed in host range and in virulence. Lysogens L4-4 (V5) and L4-4 (V12) were immune to infection by phages V and V5 but not to infection by V12. Southern hybridization analysis confirmed the incorporation of phage V into the genomes of strains L4-4(V5) and L4-4(V12) and also demonstrated the incorporation of phage V into the genome of a phage V-resistant derivative of USDA 123 designated 123 (V2). None of the three lysogens, L4-4(V5), L4-4(V12), or 123B(V2), was able to nodulate soybean plants. However, Southern hybridization profile data indicated that phage V had not incorporated into any of the known B. japonicum nodulation genes.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference31 articles.

1. Adams M. H. 1959. The bacteriophages. Interscience Publishers Inc. New York.

2. Bacteriophages of Rhizobium trifolii. I. Morphology and host range;Barnet Y. M.;J. Gen. Virol.,1972

3. Ultrastructure of bacteriophages and bacteriocins;Bradley D. E.;Bacteriol. Rev.,1967

4. Generalized transduction in Rhizobium leguminosarum;Buchanan-Wollaston V.;J. Gen. Microbiol.,1979

5. Generalized transduction in Rhizobium meliloti by a thermosensitive mutant of bacteriophage DF2;Casadesus J.;J. Bacteriol.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3