Three small partner proteins facilitate the type VII-dependent secretion of an antibacterial nuclease

Author:

Yang Yaping1ORCID,Boardman Eleanor1,Deme Justin2,Alcock Felicity1ORCID,Lea Susan2ORCID,Palmer Tracy1ORCID

Affiliation:

1. Newcastle University Biosciences Institute, Newcastle University , Newcastle upon Tyne, United Kingdom

2. Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH , Frederick, Maryland, USA

Abstract

ABSTRACT The type VIIb secretion system (T7SSb) is a multisubunit protein export machine found in Gram-positive Bacillota which plays a key role in interbacterial competition. The T7SSb secretes a variety of toxic effector proteins targeting closely related strains; however, the mechanism of secretion and the roles of numerous conserved genes within T7SSb gene clusters remain unknown. EsaD is a nuclease toxin secreted by the Staphylococcus aureus T7SSb, which forms a pre-secretion complex with its cognate immunity protein, EsaG, and chaperone EsaE. Encoded upstream of EsaD are three small secreted proteins of unknown function: EsxB, EsxC, and EsxD. Here, we show that these three proteins bind to EsaD and function as EsaD export factors and we report preliminary structural information for a complete T7SSb substrate pre-secretion complex. Cryo-electron microscopy of the EsaDEG trimer and the EsaDEG-EsxBCD hexamer shows that incorporation of EsxBCD confers an elongated conformation comprising a flexible globular cargo domain attached to a long narrow shaft that is likely to be crucial for efficient toxin export. IMPORTANCE Staphylococcus aureus is an opportunistic human pathogen associated with severe infections and antimicrobial resistance. S. aureus strains utilize a type VII secretion system to secrete toxins targeting competitor bacteria, likely facilitating colonization. EsaD is a nuclease toxin secreted by the type VII secretion system in many strains of S. aureus as well as other related bacterial species. Here, we identify three small proteins of previously unknown function as export factors, required for efficient secretion of EsaD. We show that these proteins bind to the transport domain of EsaD, forming a complex with a striking cane-like conformation.

Funder

Wellcome Trust

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3