Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen

Author:

Grad Yonatan H.12,Godfrey Paul3,Cerquiera Gustavo C.3,Mariani-Kurkdjian Patricia4,Gouali Malika5,Bingen Edouard46,Shea Terrence P.3,Haas Brian J.3,Griggs Allison3,Young Sarah3,Zeng Qiandong3,Lipsitch Marc27,Waldor Matthew K.18,Weill François-Xavier5,Wortman Jennifer R.3,Hanage William P.2

Affiliation:

1. Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA

2. Department of Epidemiology, Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts, USA

3. Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA

4. Laboratoire Associé au Centre National de Référence des Escherichia coli et Shigella, Service de Microbiologie, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France

5. Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli et Shigella, Paris, France

6. Universite Paris-Diderot, Sorbonne Paris Cité, Paris, France

7. Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA

8. Howard Hughes Medical Institute, Boston, Massachusetts, USA

Abstract

ABSTRACT The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. IMPORTANCE In the summer of 2011, a large outbreak of bloody diarrhea with a high rate of severe complications took place in Europe, caused by a previously rarely seen Escherichia coli strain of serogroup O104:H4. Identification of subsequent infections caused by E. coli O104:H4 raised questions about whether these new cases represented ongoing transmission of the outbreak strain. In this study, we sequenced the genomes of isolates from five recent cases and compared them with historical isolates. The analyses reveal that, in the very short term, evolution of the bacterial genome takes place in parts of the genome that are exchanged among bacteria, and these regions contain genes involved in adaptation to local environments. We show that these recent isolates are not derived from the outbreak strain but are very closely related and share many of the same disease-causing genes, emphasizing the concern that these bacteria may cause future severe outbreaks.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3