Mechanistic Insight into the Binding and Swelling Functions of Prepeptidase C-Terminal (PPC) Domains from Various Bacterial Proteases

Author:

Huang JiaFeng1,Wu RiBang1,Liu Dan1,Liao BinQiang1,Lei Ming1,Wang Meng1,Huan Ran1,Zhou MingYang2,Ma ChangBei1,He HaiLun1

Affiliation:

1. School of Life Sciences, Central South University, Changsha, People’s Republic of China

2. Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People’s Republic of China

Abstract

Prepeptidase C-terminal (PPC) domains commonly exist in the C termini of marine bacterial proteases. Reports examining PPC have been limited, and its functions remain unclear. In this study, eight PPCs from six different bacteria were examined. Most of the PPCs possessed the ability to bind collagen, feathers, and chitin, and all PPCs could significantly swell insoluble collagen. PPCs can expose collagen monomers but cannot disrupt pyridinoline cross-links or unwind the collagen triple helix. This swelling ability may also play synergistic roles in collagen hydrolysis. Comparative structural analyses and the examination of PPC mutants revealed that the hydrophobic binding pockets of PPCs may play important roles in collagen binding. This study provides new insights into the functions and ecological significance of PPCs, and the molecular mechanism of the collagen binding of PPCs was clarified, which is beneficial for the protein engineering of highly active PPCs and collagenase in the pharmaceutical industry and of artificial biological materials.

Funder

Opening Foundation of the Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution

Fundamental Research Funds for the Central Universities of Central South University

National Natural Science Foundation of China

Hunan Provincial Science and Technology Department

Hunan Provincial Innovation Foundation for Postgraduate

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3