Ecological Function of Myroilysin, a Novel Bacterial M12 Metalloprotease with Elastinolytic Activity and a Synergistic Role in Collagen Hydrolysis, in Biodegradation of Deep-Sea High-Molecular-Weight Organic Nitrogen

Author:

Chen Xiu-Lan1,Xie Bin-Bin1,Bian Fei1,Zhao Guo-Yan1,Zhao Hui-Lin1,He Hai-Lun1,Zhou Bai-Cheng1,Zhang Yu-Zhong1

Affiliation:

1. State Key Lab of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, People's Republic of China

Abstract

ABSTRACT Nearly all high-molecular-weight (HMW) dissolved organic nitrogen and part of the particulate organic nitrogen in the deep sea are present in hydrolysis-resistant amides, and so far the mechanisms of biodegradation of these types of nitrogen have not been resolved. The M12 family is the second largest family in subclan MA(M) of Zn-containing metalloproteases and includes most enzymes from animals and only one enzyme (flavastacin) from a human-pathogenic bacterium ( Flavobacterium meningosepticum ). Here, we characterized the novel M12 protease myroilysin with elastinolytic activity and collagen-swelling ability from the newly described deep-sea bacterium Myroides profundi D25. Myroilysin is a monomer enzyme with 205 amino acid residues and a molecular mass of 22,936 Da. It has the same conserved residues at the four zinc ligands as astacin and very low levels of identity (≤40%) to other metalloproteases, indicating that it is a novel metalloprotease belonging to subfamily M12A. Myroilysin had broad specificity and much higher elastinolytic activity than the bacterial elastinase pseudolysin. To our knowledge, it is the first reported elastase in the M12 family. Although it displayed very low activity with collagen, myroilysin had strong collagen-swelling ability and played a synergistic role with collagenase in collagen hydrolysis. It can be speculated that myroilysin synergistically interacts with other enzymes in its in situ biotic assemblage and that it may play an important role in the degradation of deep-sea HMW organic nitrogen.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3