Coordinated Regulation of the Size and Number of Polyhydroxybutyrate Granules by Core and Accessory Phasins in the Facultative Microsymbiont Sinorhizobium fredii NGR234

Author:

Sun Yan-Wei123,Li Yan4,Hu Yue123,Chen Wen-Xin123,Tian Chang-Fu123ORCID

Affiliation:

1. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China

2. MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China

3. Rhizobium Research Center, College of Biological Sciences, China Agricultural University, Beijing, China

4. Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China

Abstract

Polyhydroxybutyrate (PHB) granules are a store of carbon and energy in bacteria and archaea and play an important role in stress adaptation. Recent studies have highlighted distinct roles of several granule-associated proteins (GAPs) in regulating the size, number, and localization of PHB granules in free-living bacteria, though our knowledge of the role of GAPs in bacteria associated with plants is still limited. Here we report distinct roles of core and accessory phasins associated with PHB granules of Sinorhizobium fredii NGR234, a broad-host-range microsymbiont of diverse legumes. Core phasins PhaP2 and PhaP1 are conserved major phasins in free-living cells. PhaP2 and accessory phasin PhaP3, encoded by an auxiliary gene on the symbiosis plasmid, are major phasins in nitrogen-fixing bacteroids in cowpea nodules. GAPs and metabolic profiles can vary in different phaP mutants. Contrasting symbiotic performances between mutants lacking PHB synthases, depolymerase, or phasins were revealed.

Funder

Innovative Project of State Key Laboratory of Agrobiotechnology

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3