Involvement of the Reserve Material Poly-β-Hydroxybutyrate in Azospirillum brasilense Stress Endurance and Root Colonization

Author:

Kadouri Daniel1,Jurkevitch Edouard1,Okon Yaacov1

Affiliation:

1. Department of Plant Pathology and Microbiology and The Otto Warburg Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel

Abstract

ABSTRACT When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-β-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense , PHB production does not seem to provide an advantage in root colonization under the conditions tested.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3