Mitochondria InfluenceCDR1Efflux Pump Activity, Hog1-Mediated Oxidative Stress Pathway, Iron Homeostasis, and Ergosterol Levels in Candida albicans

Author:

Thomas Edwina,Roman Elvira,Claypool Steven,Manzoor Nikhat,Pla Jesús,Panwar Sneh Lata

Abstract

ABSTRACTMitochondrial dysfunction inCandida albicansis known to be associated with drug susceptibility, cell wall integrity, phospholipid homeostasis, and virulence. In this study, we deletedCaFZO1, a key component required during biogenesis of functional mitochondria. Cells withFZO1deleted displayed fragmented mitochondria, mitochondrial genome loss, and reduced mitochondrial membrane potential and were rendered sensitive to azoles and peroxide. In order to understand the cellular response to dysfunctional mitochondria, genome-wide expression profiling offzo1Δ/Δ cells was performed. Our results show that the increased susceptibility to azoles was likely due to reduced efflux activity ofCDRefflux pumps, caused by the missorting of Cdr1p into the vacuole. In addition,fzo1Δ/Δ cells showed upregulation of genes involved in iron assimilation, in iron-sufficient conditions, characteristic of iron-starved cells. One of the consequent effects was downregulation of genes of the ergosterol biosynthesis pathway with a commensurate decrease in cellular ergosterol levels. We therefore connect deregulated iron metabolism to ergosterol biosynthesis pathway in response to dysfunctional mitochondria. Impaired activation of the Hog1 pathway in the mutant was the basis for increased susceptibility to peroxide and increase in reactive oxygen species, indicating the importance of functional mitochondria in controlling Hog1-mediated oxidative stress response. Mitochondrial phospholipid levels were also altered as indicated by an increase in phosphatidylserine and phosphatidylethanolamine and decrease in phosphatidylcholine infzo1Δ/Δ cells. Collectively, these findings reinforce the connection between functional mitochondria and azole tolerance, oxidant-mediated stress, and iron homeostasis inC. albicans.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3