Divergent mitochondrial responses and metabolic signal pathways secure the azole resistance in Crabtree-positive and negative Candida species

Author:

Zhou Meng12ORCID,Peng Jingwen3,Ren Kun4,Yu Yu12,Li Dongmei5ORCID,She Xiaodong12ORCID,Liu Weida126

Affiliation:

1. Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China

2. Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China

3. Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China

4. Centers for pharmaceutical preparations, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China

5. Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, USA

6. Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China

Abstract

ABSTRACT Azole drugs are the main therapeutic drugs for invasive fungal infections. However, azole-resistant strains appear repeatedly in the environment, posing a major threat to human health. Several reports have shown that mitochondria are associated with the virulence of pathogenic fungi. However, there are few studies on the mechanisms of mitochondria-mediated azoles resistance. Here, we first performed mitochondrial proteomic analysis on multiple Candida species ( Candida albicans , Nakaseomyces glabrata , Pichia kudriavzevii, and Candida auris ) and analyzed the differentially expressed mitochondrial proteins (DEMPs) between azole-sensitive and azole-resistant Candida species. Subsequently, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology analysis, and protein-protein interaction network analysis of DEMPs. Our results showed that a total of 417, 165, and 25 DEMPs were identified in resistant C. albicans , N. glabrata, and C. auris , respectively. These DEMPs were enriched in ribosomal biogenesis at cytosol and mitochondria, tricarboxylic acid cycle, glycolysis, transporters, ergosterol, and cell wall mannan biosynthesis. The high activations of these cellular activities, found in C. albicans and C. auris (at low scale), were mostly opposite to those observed in two fermenter species— N. glabrata and P. kudriavzevii . Several transcription factors including Rtg3 were highly produced in resistant C. albicans that experienced a complex I activation of mitochondrial electron transport chain (ETC). The reduction of mitochondrial-related activities and complex IV/V of ETC in N. glabrata and P. kudriavzevii was companying with the reduced proteins of Tor1, Hog1, and Snf1/Snf4. IMPORTANCE Candida spp. are common organisms that cause a variety of invasive diseases. However, Candida spp. are resistant to azoles, which hinders antifungal therapy. Exploring the drug-resistance mechanism of pathogenic Candida spp. will help improve the prevention and control strategy and discover new targets. Mitochondria, as an important organelle in eukaryotic cells, are closely related to a variety of cellular activities. However, the role of mitochondrial proteins in mediating azole resistance in Candida spp. has not been elucidated. Here, we analyzed the mitochondrial proteins and signaling pathways that mediate azole resistance in Candida spp. to provide ideas and references for solving the problem of azole resistance. Our work may offer new insights into the connection between mitochondria and azoles resistance in pathogenic fungi and highlight the potential clinical value of mitochondrial proteins in the treatment of invasive fungal infections.

Funder

MOST | National Natural Science Foundation of China

MOST | National Key Research and Development Program of China

Publisher

American Society for Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3