The Bad Guy Cooperates with Good Cop p53: Bad Is Transcriptionally Up-Regulated by p53 and Forms a Bad/p53 Complex at the Mitochondria To Induce Apoptosis

Author:

Jiang Peng1,Du Wenjing1,Heese Klaus2,Wu Mian1

Affiliation:

1. Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

2. Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore

Abstract

ABSTRACT Although the regulation of several Bcl-2 family molecules, including Puma, Noxa, Bax, and Bid, by p53 has been studied intensively, the interplay between Bad (Bcl-2 antagonist of cell death) and p53 has not yet been reported thus far. Here, we report that p53 activates Bad transcription and expression through binding to a short conserved sequence located approximately 6.6 kb upstream of the translation start point. We also demonstrate that Bad physically interacts with cytoplasmic p53, thereby preventing p53 from entering the nucleus and resulting in reduced transcription of Bad. Moreover, Bad is able to direct p53 to the mitochondria and forms a p53/Bad complex at the mitochondria. Two lines of evidences support this hypothesis: first, when mitochondria purified from p53-deficient H1299 cells are incubated with p53 and either wild-type (wt) Bad or mutant Bad (this mutant binds p53 yet is unable to migrate to mitochondria), p53 can be detected only in mitochondria incubated with wt Bad and not in those incubated with mutant Bad; second, knockdown of Bad expression reduces mitochondrial localization of p53. The mitochondrial p53/Bad complex promotes apoptosis via activation and oligomerization of Bak. Elimination of Bad expression by RNA interference notably attenuates apoptosis induced by etoposide. Hence, our collective data provide the first evidence that Bad plays dual roles in both p53 transcription-dependent and -independent pathways.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3