MucA-Mediated Coordination of Type III Secretion and Alginate Synthesis in Pseudomonas aeruginosa

Author:

Wu Weihui1,Badrane Hassan1,Arora Shiwani2,Baker Henry V.1,Jin Shouguang1

Affiliation:

1. Department of Molecular Genetics and Microbiology

2. Department of Medicine, University of Florida College of Medicine, Gainesville, Florida

Abstract

ABSTRACT The type III secretion system (T3SS) of Pseudomonas aeruginosa is an important virulence factor. The T3SS of P. aeruginosa can be induced by a low calcium signal or upon direct contact with the host cells. The exact pathway of signal sensing and T3SS activation is not clear. By screening a transposon insertion mutant library of the PAK strain, mutation in the mucA gene was found to cause repression of T3SS expression under both type III-inducing and -noninducing conditions. Mutation in the mucA gene is known to cause alginate overproduction, resulting in a mucoid phenotype. Alginate production responds to various environmental stresses and plays a protective role for P. aeruginosa . Comparison of global gene expression of mucA mutant and wild-type PAK under T3SS-inducing conditions confirmed the down regulation of T3SS genes and up regulation of genes involved in alginate biosynthesis. Further analysis indicated that the repression of T3SS in the mucA mutant was AlgU and AlgR dependent, as double mutants mucA/algU and mucA/algR showed normal type III expression. An algR :: Gm mutant showed a higher level of type III expression, while overexpression of the algR gene inhibited type III gene expression; thus, it seems that the AlgR-regulated product inhibits the expression of the T3SS genes. It is likely that P. aeruginosa has evolved tight regulatory networks to turn off the energy-expensive T3SS when striving for survival under environmental stresses.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3