Escherichia coli RNA Polymerase Recognition of a σ 70 -Dependent Promoter Requiring a −35 DNA Element and an Extended −10 TGn Motif

Author:

Hook-Barnard India1,Johnson Xanthia B.1,Hinton Deborah M.1

Affiliation:

1. Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8, Room 2A-13, Bethesda, Maryland 20892-0830

Abstract

ABSTRACT Escherichia coli σ 70 -dependent promoters have typically been characterized as either −10/−35 promoters, which have good matches to both the canonical −10 and the −35 sequences or as extended −10 promoters (TGn/−10 promoters), which have the TGn motif and an excellent match to the −10 consensus sequence. We report here an investigation of a promoter, P minor , that has a nearly perfect match to the −35 sequence and has the TGn motif. However, P minor contains an extremely poor σ 70 −10 element. We demonstrate that P minor is active both in vivo and in vitro and that mutations in either the −35 or the TGn motif eliminate its activity. Mutation of the TGn motif can be compensated for by mutations that make the −10 element more canonical, thus converting the −35/TGn promoter to a −35/−10 promoter. Potassium permanganate footprinting on the nontemplate and template strands indicates that when polymerase is in a stable (open) complex with P minor , the DNA is single stranded from positions −11 to +4. We also demonstrate that transcription from P minor incorporates nontemplated ribonucleoside triphosphates at the 5′ end of the P minor transcript, which results in an anomalous assignment for the start site when primer extension analysis is used. P minor represents one of the few −35/TGn promoters that have been characterized and serves as a model for investigating functional differences between these promoters and the better-characterized −10/−35 and extended −10 promoters used by E. coli RNA polymerase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3