The organization of open complexes between Escherichia coli RNA polymerase and DNA fragments carrying promoters either with or without consensus −35 region sequences

Author:

Chan B1,Spassky A2,Busby S1

Affiliation:

1. School of Biochemistry, University of Birmingham, Birmingham B15 2TT, U.K.

2. Département de Biologie Moléculaire, Institut Pasteur, 75724 Paris Cédex 15, France

Abstract

Transcription initiation at the Escherichia coli galP1 promoter does not depend on specific nucleotide sequences in the -35 region. Footprint analysis of transcriptionally competent complexes between E. coli RNA polymerase and DNA fragments carrying galP1 shows that RNA polymerase protects sequences as far upstream as -55, whereas sequences around the -35 region are exposed. In contrast, with galP1 derivatives carrying -35 region sequences resembling the consensus, RNA polymerase protects bases as far as -45, and the -35 region is fully protected. Taken together, our data suggest that the overall architecture of RNA polymerase-promoter complexes can vary according to whether or not consensus -35 region sequences are present; in the absence of these sequences, open complex formation requires distortion of the promoter DNA. However, the unwinding of promoter DNA around the transcription start is not affected by the nature of the -35 region sequence. With a galP1 derivative carrying point mutations in the spacer region that greatly reduce promoter activity, the protection of bases by RNA polymerase around the -10 sequence and transcription start site is reduced. In contrast, protection of the region upstream of -25 is unaffected by the spacer mutations, although sequences from -46 to -54 become hypersensitive to attack by potassium permanganate, indicating severe distortion or kinking of this zone. We suggest that, with this galP1 derivative, RNA polymerase is blocked in a complex that is an intermediate on the path to open complex formation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3